Unit: Redshift and the Universe Expansion Activity 1: How Fast Do Galaxies Move?	Name Date Period
Objectives: Students will • Interpret an emission spectrum for redshift.	
• Use the percent change of redshift to calculate Directions: Go to the "How Fast Do Galaxies Move?" www.cfa.harvard.edu/seuforum/galSpeed. Follow sections, recording your data and answering quese [this tool likely works best in Firefox and not Chrome, as in	" interactive lab website at w the guide below as you work through the different tions in the spaces provided.
Student Interactive Lab Guide: Read "Frozen In Time" and "Welcome to Virtual Spectro	oscope Lab" information.
Step 1: Getting a Feel For The Spectroscope	
*Read information	
*Click on Virtual Spectroscope	
*Select "Sun" on pull down menu	
Q1. Name the colors of the visible spectrum from longest wavelength to shortest.	
Q2. What type of EMR has a wavelength longer than 700 nm?	

Step 2: What Do The Patterns Tell Us?

Q3. Can humans "see" this wavelength? If so, how

*Read this section

can it be done?

*Click back on Virtual Spectroscope and choose <u>fluorescent lamp</u> from the pull down menu.

EMR. They should also appear in the middle graph.		
Step 3: "Fingerprinting" an Element.		
*Read this section		
*Click back on Virtual Spectroscope and choose	<u>hydrogen</u> from the pull down menue.	
*Click on the center graph to create a vertical lin	e you can move to align with different points. Notice	
the wavelength reading in the upper right	the wavelength reading in the upper right that changes with movement. We'll use this tool in	
next steps.		
Q 5. If <u>hydrogen's</u> red line represents a wavelength of 656 nm, what is the wavelength for the blue line?		
*Read this section *Choose your speed and click "emit waves" Q 6. Your Prediction — If the source of the waves moves towards you, will the wavelength of the waves appear shorter, longer, or the same as when the source is stationary?		
Q 7. How about for a source that's moving away from you?		
Q 8. Describe how the Doppler effect would be recognized with sound waves.		
Step 5: Understanding "REDSHIFT" *Read this section *Click back on Virtual Spectroscope and choose	Galaxy 1 from the pull down menu.	
Q 9. In the original <u>hydrogen emission spectrum</u> the red line represented a wavelength of 656 nm. What is its wavelength in Galaxy 1?		

Q 10. Would you conclude Galaxy 1 is moving away from Earth or towards Earth? Why?	

Step 6: "Clocking" a Galaxy

*Read this section

*Click on Virtual Spectroscope and choose <u>Galaxy 3</u> from the pull down menu.

Q 11. Compare the hydrogen redshift of <u>Galaxy 3</u> to <u>Galaxy 1</u> . Based on your above investigation with Doppler effect, which galaxy is moving away faster?	
If the amount of redshift is proportional to the speed of the galaxythen	Galaxy 1 redshifted 13 nm from the original 656 nm.
% change of redshift = % of speed of light	$\frac{13 \text{ nm}}{656 \text{ nm}} \times 100 = 1.98\% \text{ change in hydrogen}$ redshift $.198 (3.0 \times 10^8 \text{ m/sec}) = 5.94 \times 10^6 \text{ m/sec}$ speed of light or $5,940 \text{ km/sec}$
Q 12. Calculate the speed of Galaxy 3. Show work. Did you support your Q 11. answer?	

CONGRATULATIONS!

It's one thing to measure the speed of a car or baseball pitch (v=d/t)....but you've just measured the speed of a galaxy from millions of trillions of kilometers away from Earth!